

Orbiting Wide-angle Lightcollectors (OWL)

Mechanical Subsystem
Rodger Farley
Dave Palace
Mick Correia

CAD Views of OWL

Instrument Synthesis and Analysis Laboratory

Major Items

Instrument Synthesis and Analysis Laboratory

- 8 deployable mirror petals + 1 fixed center shell
- A-frame support structures behind each deployed mirror petals
- Tip-tilt-focus adjustment actuators, 3 per deployed mirror petals
- Octagonal ring base structure, I/F to spacecraft bus
- Fixed detector plane support structure
- Deployable corrector plate support structure
- Inflatable light-tight, thermal-debris shield
- Articulating light-tight aperture cover ("lens cap")
- Launch-lock and release mechanisms for petals, corrector, and lens cap
- Motorized deployments for petals, corrector
- Most materials will be low CTE composite graphite-cyanate ester

Primary Mirror

Instrument Synthesis and Analysis Laboratory

- Mirrored shells are 40 to 50 mm graphite composite honeycomb
- 3-point mounted to the honeycomb A-frame back-up structure
- Each of the 3 points has a ball-screw actuator connected via flexures
- Inner hinge point A-frame design
- Outer offset-hinge A-frame design

Detector plane and Corrector plate

Instrument Synthesis and Analysis Laboratory

Deployment Systems

Instrument Synthesis and Analysis Laboratory

Mirror shells "hold hands" for launch. More actuators will be necessary for good load path and high natural vibration frequency

A-frames motor out sequentially

Latch motors pull A-frame into preloaded stops

Motorized hinge raises the corrector plate —

18 January 2002

3-way HOP launch lock, 4 places

`Launch lock stanchion not shown, 4 places

Inflatable light-tight debris shield

Instrument Synthesis and Analysis Laboratory

- Made of 10 layer MLI plus "bladder" plus micrometeoroid shield
- Shaped as a "jiffy-pop", with rigidized toroid and 8 ribs
- Mass of MLI ~ 60 kg
- Mass of micrometeoroid material ~ 50 kg
- Mass of titanium pressure tank \sim 11 kg, 300mm diameter, 9mm thick wall
- ullet Total mass with plumbing, valves, and container box $\sim\!180~{
 m kg}$

Some Numbers

Instrument Synthesis and Analysis Laboratory

- 24 focus adjustment micron level actuators
- 8 petal deployment motors
- 8 petal latch motors
- 4 corrector plate deployment motors
- 1 lens cap motor
- 1 lens cap launch lock/reseal motor
- 8-10 inflation valve motor/solenoids
- •8 High Output Paraffin actuators for the inflated shield container
- 4-16 HOPs for the petal launch lock-release mechanisms
- 4 HOPs for the corrector plate launch lock-release mechanisms
- AND THEN THERE IS REDUNDANCY TO CONSIDER!!
- The Instrument Module ~ 2000+ kg
- Launch mass to 0 deg inclination 15000 km orbit is ~7000 kg